Le tableau périodique

Chimie 11

Un lent développement

- Döbereiner (1780-1849) : loi des triades similarités entre le calcium, le strontium et le baryum
- Newlands (1837-1898) : loi des octaves lien entre la masse et les propriétés des éléments
- Mendeleev (1834-1907) : la périodicité des propriétés publication du premier tableau périodique des éléments
- Moseley (1887-1915): le nombre atomique rangement par nombre atomique croissant

Le tableau périodique

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H 1,01							atomique										2 He 4,00
2	3 Li	4 Be					Elén Masse a	nent tomique					5 B	6 C	7 N	8 0	9 F	10 Ne
3	6,94 11 Na	9,01 12 Mg											10,81 13 Al	12,01 14 Si	14,01 15 P	16,00 16 S	19,00 17 Cl	20,18 18 Ar
	22,99 19	24,31 20	21	22	23	24	25	26	27	28	29	30	26,98 31	28,09 32	30,97 33	32,07 34	35,45 35	39,95 36
4	K 39,10 37	Ca 40,08 38	Sc 44,96 39	Ti 47,87 40	50,94 41	Cr 52,00 42	Mn 54,94 43	Fe 55,85 44	Co 58,93 45	Ni 58,69 46	63,55 47	Zn 65,38 48	Ga 69,72 49	Ge 72,63 50	As 74,92 51	Se 78,96 52	Br 79,90 53	Kr 83,90 54
5	Rb 85,47	Sr 87,62	Y 88,91	Zr 91,22	Nb 92,91	Mo 95,96	Tc (98)	Ru 101,07	Rh 102,91	Pd 106,42	Ag 107,87	Cd 112,41	In 114,82	Sn 118,1	Sb 121,76	Te 127,60	1 126,90	Xe 131,29
6	55 Cs 132,91	56 Ba 137,33	57 † La 138,91	72 Hf 178,49	73 Ta 180,95	74 W 183,84	75 Re 186,21	76 Os 190,23	77 Ir 192,22	78 Pt 195,08	79 Au 196,97	80 Hg 200,59	81 Tl 204,38	82 Pb 207,20	83 Bi 208,98	84 Po (209)	85 At (210)	86 Rn (222)
7	87 Fr (223)	88 Ra (226)	89 ‡ Ac (227)	104 Rf (267)	105 Db (268)	106 Sg (269)	107 Bh (270)	108 Hs (269)	109 Mt (278)	110 Ds (281)	111 Rg (281)	112 Cn (285)	113 Uut (286)	114 Uuq (289)	115 Uup (288)	116 Uuh (293)	117 Uus (294)	118 Uuo (294)
	(223)	(220)		58	59	60	61	62	63	64	65	66	67	68	69	70	71]
			t	Ce 140,12 90	Pr 140,91 91	Nd 144,24 92	Pm (145) 93	Sm 150,36 94	Eu 151,96 95	Gd 157,25 96	Tb 158,93	Dy 162,50 98	Ho 164,93	Er 167,26 100	Tm 168,93 101	Yb 173,05 102	Lu 174,97 103	
			#	Th	Pa	Ü	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Le tableau périodique

I H Hydrogen																	2 He
3 Li	4 Be		Mé	taux		Mét	alloï	des	Non	-méi	aux	5 B	6 C	7 N Necessor	O Orrigin	9 F	10 Ne Non
11 Na Sodium	12 Mg Magnesium											13 Al America	14 Si	15 P Phophras	16 S Softe	17 Cl Oxione	18 Ar
19 K Potenium	20 Ca	21 Sc Scordism	22 Ti	23 V Venedium	24 Cr	25 Mn	26 Fe	27 Co	28 Ni Nicket	29 Cu	30 Zn	31 Ga	32 Ge	As As	34 Se	35 Br	36 Kr Keyman
37 Rb Eshelum	38 Sr Stootian	39 Y	40 Zr	41 Nb Nichian	42 Mo	43 Tc Tochnolism	44 Ru Rebesium	45 Rh Rhodium	46 Pd Palladium	47 Ag	48 Cd Cadmium	49 In	50 Sn	51 Sb	52 Te	53 I Induc	54 Xe _{Xoro}
55 Cs Centum	56 Ba	57 La	72 Hf	73 Ta	74 W Tungshon	75 Re	76 Os	77 Ir	78 Pt Patienes	79 Au	80 Hg	81 Tl Thellore	82 Pb	83 Bi	84 Po	85 At Adabar	86 Rn Hadon
87 Fr	SS Ra Radison	89 Ac	104 Rf Rephylinsjen	105 Db Dahrasan	106 Sg Systrotypun	107 Bh	108 Hs	109 Mt Memorium	110	111	112	113	114				

Propriétés du tableau périodique

- La classification des 118 éléments est faite suivant le numéro atomique
 - une période = une rangée une famille = une colonne
- 18 familles regroupant des éléments ayant des propriétés chimiques semblables.
 - Colonne 1 : les métaux alcalins
 - Colonne 17 : les halogènes
 - Colonne 18 : les gaz nobles.
- Les colonnes donnent le nombre d'électrons de valence (#colonne -10 pour les colonnes 13 à 18)

Métaux, non-métaux et métalloïdes

Métaux Non-métaux ductiles non ductiles Métalloïdes non malléables malléables brillants mats mauvais conducteurs bons conducteurs électriques électriques bons conducteurs mauvais conducteurs thermiques thermiques solides solides, liquides ou gaz

Propriétés

- Réagissent avec les acides
- Forment des cations

Ex : Na⁺, Mg²⁺

 Forment des oxydes basiques

 $MgO + H_2O \rightarrow Mg(OH)_2$

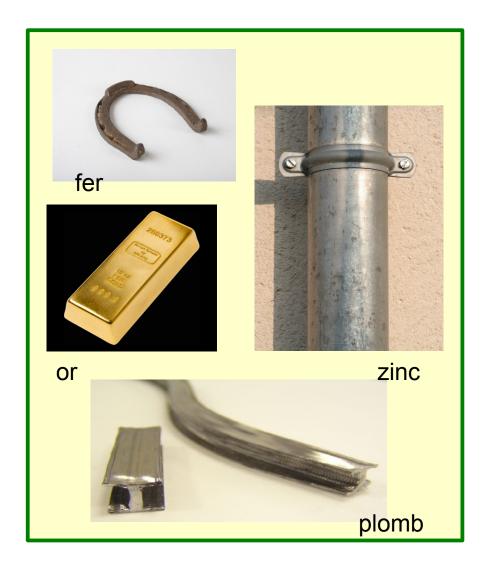
 Forment des halogénures ioniques

NaCl

- Ne réagissent pas avec les acides
 - Forment des anions

Ex : Cl⁻, S²⁻

 Forment des oxydes acides

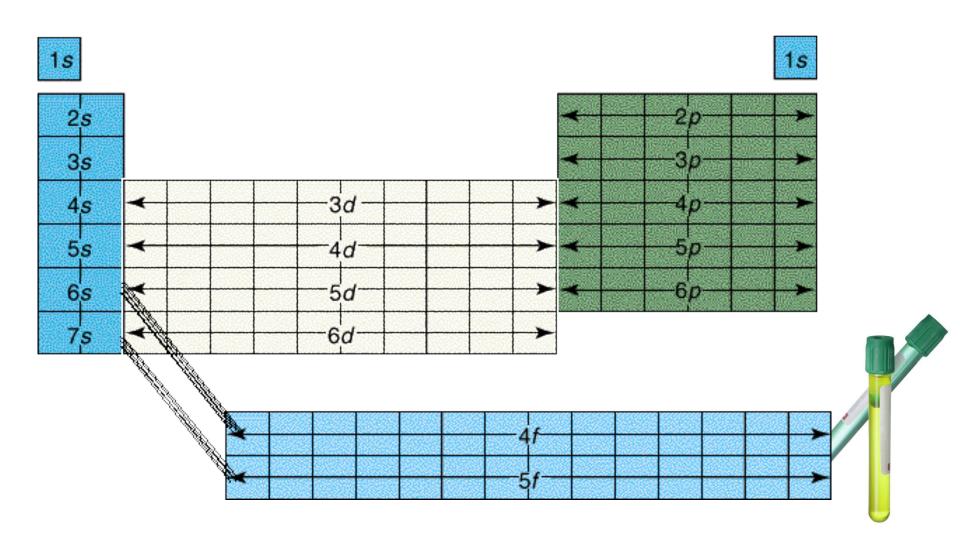

$$SO_3 + H_2O \rightarrow H_2SO_4$$

Forment des halogénures covalents

CCI.

Propriétés intermédiaires


Exemples


Les métalloïdes

- Éléments chimiques dont les propriétés physiques et chimiques sont intermédiaires entre les métaux et les nonmétaux
- Bore, Silicium, Germanium, Arsenic, Antimoine, Tellure, Astatine
- semi-conducteurs

Tableau et orbitales

Les métaux de transition

Ils ont tous des propriétés physiques et chimiques semblables indépendamment de la colonne où ils se trouvent :

- Points de fusion et d'ébullition élevés, masses volumiques importantes
- Forment plusieurs cations stables et des ions complexes covalents.
 Ex : Fe²⁺ et Fe³⁺, AuCl₄⁻,
 Fe(CN)₆³⁻
- Forment des solutions et des composés colorés

NiCl₂• 6 H₂O

Bleu de prusse $Fe_4[Fe(CN)_6]_3$

Les métaux de transition

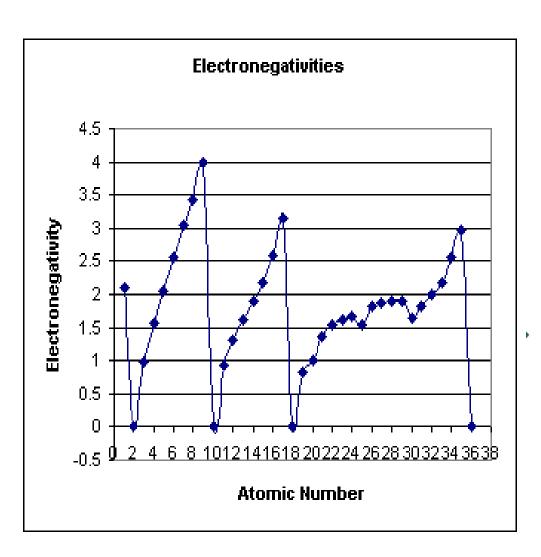
- Peu réactifs avec l'eau
- Agissent souvent comme catalyseurs
- Peuvent être combinés avec d'autres métaux pour former des alliages
 - bronze = cuivre + étain
 - Laiton = cuivre + zinc
 - Amalgame = mercure + or/cuivre/argent

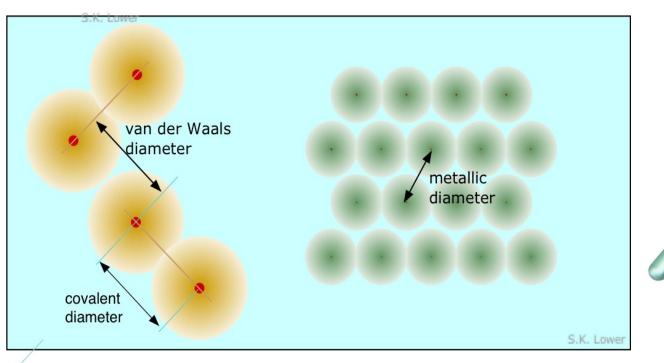
Amalgame dentaire

Raccord en laiton

Médaille de bronze

Les lanthanides et les actinides


- Remplissage des orbitales f
- Parfois improprement appelés "terres rares"
- Lanthanides : Lanthane (57) au Lutétium (71)
- Actinides : Actinium (89) au Lawrencium (103) ; tous les actinides plus lourds que l'uranium ont été générés artificiellement et sont radioactifs.


Périodicité des propriétés physiques

- Le rayon atomique
- Le rayon ionique
- L'énergie d'ionisation
- L'électronégativité
- Le point de fusion

Le rayon atomique

- En théorie, le rayon d'un atome est la distance du noyau aux électrons de la couche la plus externe.
- En pratique, les mesures sont variables

Tendances

Deux facteurs déterminent la taille d'un atome :

- La charge nucléaire : la force électrostatique va attirer les électrons vers le noyau donc le rayon diminue
- L'effet d'écran : les électrons des couches intermédiaires repoussent les électrons des couches supérieures donc le rayon augmente

Plus on descend le long d'une période plus le rayon diminue

la charge nucléaire augmente et l'attraction entre protons et électrons augmente

Plus on descend le long d'une famille plus le rayon augmente

Des couches se rajoutent et l'effet d'écran augmente

Tableau et rayon

Le rayon diminue le long d'une période et augmente le long d'une famille

32 H							tomique ¹² m)										37 He
130	99]				Élér	nent					84	75	71	64	60	62
Li 76 (1+)	Be 45 (2+)						ionique ¹² m)					B 27 (3+)	C 16 (4+)	N 146 (3-)	0 140 (2-)	F 133 (1-)	Ne
160 Na 102 (1+)	140 Mg 72 (2+)							I				124 Al 54 (3+)	114 Si 40 (4+)	109 P 38 (5+)	104 S 184 (2-)	100 Cl 181 (1-)	101 Ar
200 K 138 (1+)	174 Ca 100 (2+)	159 Sc 75 (3+)	148 Ti 86 (2+) 61 (4+)	144 V 79 (2+) 54 (5+)	130 Cr 62 (3+) 44 (6+)	129 Mn 83 (2+) 53 (4+)	124 Fe 61 (2+) 55 (3+)	118 Co 65(+2) 55 (+3)	117 Ni 69 (2+)	122 Cu 77 (1+) 73 (2+)	120 Zn 74 (2+)	123 Ga 62(3+)	120 Ge 53 (4+) 272(4-)	120 As 58 (3+) 46 (5+)	118 Se 198 (2-)	117 Br 196 (1-)	116 Kr
215 Rb 152 (1+)	190 Sr 118 (2+)	176 Y 90 (3+)	164 Zr 72 (4+)	156 Nb 72 (3+) 64 (5+)	146 Mo 65 (4+)	138 Tc 65 (4+)	136 Ru 68 (3+) 62 (4+)	134 Rh 67 (+3) 60 (+4)	130 Pd 86 (2+) 62 (4+)	136 Ag 115 (1+)	140 Cd 95 (2+)	142 In 80 (3+)	140 Sn 118(2+) 69 (4+)	140 Sb 76 (3+)	137 Te 221 (2-)	136 I 220(1-)	136 Xe
238 Cs 167 (1+)	206 Ba 135 (2+)	194 La 103 (3+)	164 Hf 71 (4+)	158 Ta 64 (5+)	150 W 66 (4+) 60(6+)	141 Re 63(4+) 53(7+)	136 Os 63 (4+) 55(6+)	132 Ir 68(+3) 63 (+4)	130 Pt 80(2+) 63(4+)	130 Au 137 (1+) 85 (3+)	132 Hg 119 (1+) 102 (2+)	144 Tl 150 (1+) 89 (3)	145 Pb 119 (2+) 78 (4+)	150 Bi 103 (3+) 76(5+)	142 Po 97(4+)	148 At	146 Rn
242 Fr	211 Ra	201 Ac			, , ,	, , ,		, ,	, ,								

Rayons ioniques

Les cations :

- Ils perdent une couche donc ils sont plus petits que l'atome correspondant
- À travers une période, il y a plus de protons, la force d'attraction est plus grande et le rayon plus petit.

Les anions :

- Ils complètent une couche donc ils sont plus gros que l'atome correspondant.
- À travers une période, il y a plus de protons, la force d'attraction est plus grande et le rayon plus petit.

Les espèces isoélectroniques

Les espèces isoélectroniques sont des atomes et des ions qui ont le même nombre d'électrons.

Plus la charge nucléaire est élevée, plus les forces attractives sont fortes, plus le rayon est petit.

Espèces	Na⁺	Mg ²⁺	Al ³⁺
Charge du noyau	+11	+12	+13
Nombre d'électrons	10	10	10
Rayon ionique	98	65	45

L'énergie de première ionisation

L'énergie de première ionisation : énergie minimale requise pour arracher une mole d'électrons à une mole d'atome à l'état gazeux aux conditions standards (25°C, 1 atm)

$$X(g) \longrightarrow X^{+}(g) + e^{-}$$

- Elle diminue le long d'une famille (haut vers la bas) car les électrons sont de plus en plus éloignés du noyau
- Elle augmente le long d'une période (gauche vers droite) car la force d'attraction du noyau est plus forte
- Les gaz rares sont très stables : énergie d'ionisation très élevée

lonisation et table

L'énergie de première ionisation diminue le long d'une famille et augmente le long d'une période

1312 -	73			Énergie d	e		Affinitá álo	etronieus	1								2372
H 2,2		première ionisation (kJ mol ⁻¹) (kJ mol ⁻¹) (2e AÉ / kJ mol ⁻¹)															Не
520 -6	0 900]			,	Élément						801 -27	1086 -122	1402	1314 -141 (+753)	1681 -328	2081
Li	Ве									В	С	N	0	F	Ne		
1,0	1,6				Éle	ctronégativ	vité					2,0	2,6	3,0	3,4	4,0	
496 - 5	3 738		578 -42 787 -134 1012 -72										1000 -200 (+545)	1251 -349	1520		
Na	Mg											Al	Si	P	S	Cl	Ar
0,9	1,3											1,6	1,9	2,2	2,6	3,2	
419 -4	8 590 -2	633 -18	659 -8	651 -51	653 -64	717	762 -15	760 -64	737 -112	745 -119	906	579 -41	762 -119	944 -78	941 -195	1140 -325	1351
K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0,8	1,0	1,4	1,5	1,6	1,7	1,6	1,8	1,9	1,9	1,9	1.6	1,8	2,0	2,2	2,6	3,0	
403 -4	7 549 -5	600 -30	640 -41	652 -88	684 -72	702 -53	710 -101	720 -110	804 -54	731 -126	868	558 -29	709 -107	831 -101	869 -190	1008 -295	1170
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
0,8	1,0	1,2	1,3	1,6	2,2	2,1	2,2	2,3	2,2	1,9	1.7	1,8	2,0	2,0	2,1	2,7	2.6
376 -4	6 503 -14	538 -45	659 -1	728 -31	759 -79	756 -14	814 -106	865 -151	864 -205	890 -223	1007	589 -36	716 -35	703 -91	812 -183	-270	1037
Cs	Ba	La	Hf	Ta	w	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
0,8	0,9	1,1	1,3	1,5	1,7	1,9	2,2	2,2	2,2	2,4	1.9	1,8	1,8	1,9	2,0	2,2	
393 -4	7 509 -10	499 -34															
Fr	Ra	Ac															

L'affinité électronique

L'affinité électronique est le changement d'enthalpie quand une mole d'électron est ajoutée à une mole d'atomes à l'état gazeux et dans des conditions standards (25°C, 1 atm).

$$X(g) + e^- \longrightarrow X^-(g)$$

- Il s'agit d'un processus généralement exothermique.
- L'exothermie augmente le long d'une période car le rayon diminue
- L'exothermie diminue le long d'une famille car le rayon augmente

L'électronégativité

L'électronégativité : tendance d'un atome à attirer vers lui les électrons du doublet liant dans une liaison covalente.

Elle est mesurée sur l'échelle de Pauling qui va de 0 à 4. Elle peut être utilisée comme une mesure du caractère métallique d'un élément.

- Elle augmente le long d'une période car le rayon diminue
- Elle diminue le long d'une famille car le rayon augmente
- Les trois éléments les plus électronégatifs sont F, le fluor, N, l'azote et O, l'oxygène.

Vrai ou Faux?

- L'atome de germanium est plus gros que celui du silicium mais le silicium a une plus forte énergie de première ionisation.
- Le sélénium a une énergie de première ionisation et une électronégativité plus fortes que le soufre.
- L'antimoine a une énergie de première ionisation et une électronégativité plus fortes que l'étain.
- Cl⁻ est plus gros que Cl mais Se²⁻ est plus petit que Se.
- L'iode a une électronégativité plus forte que le tellure mais moins forte que le brome.

Les métaux alcalins

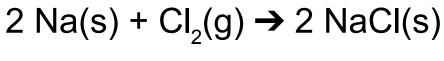
Li, Na, K, Rb, Cs, Fr

1 seul e de valence

- Très réactifs : perdent un électron
- Sont conservés dans de la paraffine ou de l'huile pour éviter le contact avec l'air

La réactivité augmente avec la

taille

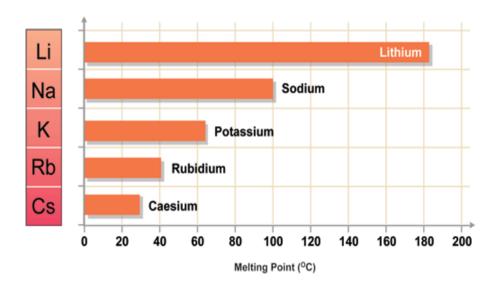


Les métaux alcalins

Alcalin = basique

Réaction avec l'eau : production d'hydroxyde
 2 Li(s) + 2 H₂O(l) → 2 Li⁺(aq) + 2 OH⁻(aq) + H₂(g)

Réaction avec les halogènes : production de sel
 2 Na(s) + Cl (a) → 2 NaCl(s)


Le point de fusion

Groupe 1 : les métaux alcalins

La température de fusion diminue le long du groupe.

Les atomes métalliques sont maintenus par des liaisons métalliques.

Les atomes sont plus gros et les liaisons métalliques sont moins fortes. Point de fusion : température à laquelle les phases solide et liquide coexistent à l'équilibre

Les halogènes

F, CI, Br, I, At

- Molécules diatomiques
- 7 électrons de valence
- Très réactifs : essaient de gagner un électron pour former un ion halogénure : F⁻, Cl⁻, Br⁻, I⁻
- la réactivité diminue avec la taille

Bromure de potassium

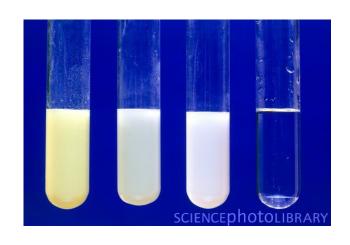
Les halogènes

Réactions de déplacement :

 Le chlore est un oxydant plus fort que le brome qui est lui-même plus fort que l'iode

$$Cl_2(aq) + 2 Br(aq) \rightarrow 2 Cl(aq) + Br_2(aq)$$

$$Br_{2}(aq) + 2 I^{-}(aq) \rightarrow 2 Br^{-}(aq) + I_{2}(aq)$$



a150326 [RM] © www.visualphotos.com

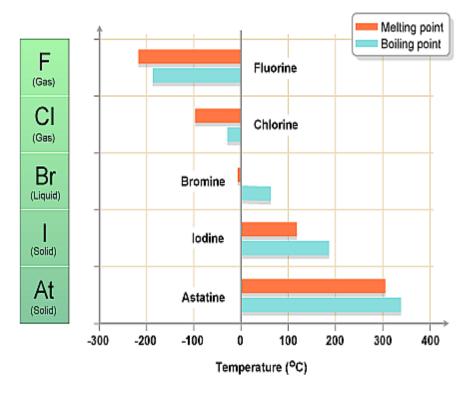
Les halogènes

Test de présence d'un ion halogénure avec du nitrate d'argent:

$$Ag^{+}(aq) + X^{-}(aq) \rightarrow AgX(s)$$

 $AgCI = blanc, AgBr = crème, AgI = jaune$

Les halogénures d'argent sont à la base de la photographie


Le point de fusion

Groupe 7 : les halogènes

La température de fusion augmente le long du groupe.

Les molécules diatomiques sont maintenues par des forces de Van der Waals.

Les molécules sont plus grosses et les forces intermoléculaires sont plus fortes.

Les oxydes de la période 3

Les oxydes métalliques ont tendance à être basiques.

$$Na_2O(s) + H_2O(l) \longrightarrow 2 NaOH(aq)$$

$$MgO(s) + H_2O(l) \longrightarrow Mg(OH)_2(aq)$$

Les oxydes non métalliques ont tendance à être acides.

$$SO_3(g) + H_2O(I) \longrightarrow H_2SO_4(aq)$$

$$P_4O_{10}(s) + 6 H_2O(l) \longrightarrow 4 H_3PO_4(aq)$$

